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Summary

Background. Deep learning applied to medical data has the potential to revolutionize
healthcare. However, concerns over data privacy limit the power and representation of
the models. A promising solution is DIStributed COllaborative (DISCO) learning
which allows several data owners (clients) to learn a joint model without sharing data.
This black-box data approach is a major limitation to interpretability and may conceal
bias or interoperability mismatches that could compromise model performance.

Aim. This project adapts a well-known interpretable prototypical part learning network
(ProtoPNet) to a federated DISCO setting to allow clients to directly visualize the
differences in the features learned from each client (without sharing them) providing
privacy-preserving and interpretable learning on images.

Methods/Findings. ProtoPNet was adjusted for a federated setting and trained for
four clients using two benchmark datasets: images of bird species and human chest
X-rays. The global models reach 81.25 and 74.53 % accuracy on birds and X-rays
unbiased datasets, respectively. We visualize and compare the prototypes learned locally
and globally. A simple systematic bias (an emoji in images of one class) injected into
one client’s data strongly affects both local and global prototypes. The models trained
in the presence of this bias give 100.0 % accuracy for a biased class when evaluated on
the biased test set and 0.0 (birds) or 50.0 (X-rays) % when evaluated on an unbiased
set. For the X-rays, we also experimented with a real-world bias: the presence of a
chest drain in the images of a pleural effusion class. This setting has a similar effect
on learned prototypes and results in 77.31 and 66.15 % accuracy for local and global
models evaluated on a biased test set.

Conclusion. Our interpretable DISCO (inDISCO) approach allows clients to detect
systematic bias in their data in an interpretable and privacy-preserving way and thus
has a potential for usage in the privacy-sensitive medical imaging domain.

Introduction

The potential impact of deep learning on clinical decision-making systems is being
increasingly documented. Numerous advances in this area suggest promising applications
of deep learning in such fields as medical image recognition, biosignal processing, genomics,
drug discovery, and more [1,2]. Deep learning and, more recently, foundation algorithms
such as large language models can not only automate routine analysis of medical
records [3] but help find hidden predictive patterns in the data that may reduce errors
and unnecessary interventions (for example biopsy) [4]. This moves us towards more
efficient, personalized, and accessible healthcare.

However, learning from medical data usually necessitates sharing it with a server
(centralized training), which is often not possible due to privacy restrictions. At the
same time, limiting training to fragments of the data (local training) would dilute
the generalizability. To address this issue, McMahan et al. [5] suggested a technique
called distributed collaborative learning or federated learning (FL) which allows privacy-
preserving and secure training on data distributed across several clients.

Though FL seemingly resolves the issue of private data sharing, its privacy comes at
a cost to data transparency, where clients learn blindly from their peers. In real-world
applications, this black-box data is often biased, poorly interoperable, and/or non-
identically and independently distributed (non-IID). This issue is particularly important
for imaging data since the complexity of the deep learning architectures for this modality
has earned them the term black-box models.
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Numerous approaches try to explain black-box models by a posthoc analysis of the
predictions made by convolutional neural networks (CNN) [6–12]. Many of these methods
are well presented in the popular book ”Interpretable Machine Learning” 1 written by
Christoph Molnar. The book describes the most popular techniques to be LIME [6],
SHAP [7], Feature visualization 2, and saliency mapping with Grad-CAM [8]. However,
these methods fail to interpret how and why a model makes its decision [13].

In opposition to black-box models, there exist inherently interpretable models, i.e.
where the decision-making component is transparent-by-design [14]. A popular example
of such a model is a prototypical part neural network (ProtoPNet) developed by Chen
et al. [15]. We summarize their implementation in Fig 1. It uses a CNN to create a
set of patches in the latent space and learn a prototypical patch from this set (i.e. a
vector representing a class that does not equal any original patch). Classification then
relies on a similarity score computed between these learned prototypes and a latent
representation of a test image. A prototype can be visualized by highlighting the patch
most activated by this prototype. The performance of ProtoPNet was demonstrated on
the task of bird species identification. The model showed an accuracy level comparable
with the state-of-the-art black-box deep neural networks while being easily interpretable.
This network is described in detail in Section ”Materials and Methods”. ProtoPNet was
further extended to perform classification of mass lesions in digital mammography [16]
and image recognition with hierarchical prototypes [17].
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Figure 1. ProtoPNet architecture. This is a centralized setting with no clients.
ProtoPNet passes raw images through a CNN to create embeddings of size
[H ×W ×D] in the latent space (Emb1, ..., EmbL), which are divided up into H ×W
image patches [1× 1×D]. These image patches (black) are clustered around the
closest prototypes (+) which are being learned for each image. Importantly the
prototype does not equal to the original patch but is a vector representing a particular
class. Classification is based on a similarity score computed between the prototypes and
the image patches. In the final panel, we see that the patch most activated by the
prototypes can be visualized directly.

To address poorly interoperable and non-IID data in the FL setting, researchers
developed a set of optimization-based methods [18–21] and personalization techniques.
The latter is presented in the works of [22] (FedPer) and [23] (iFedAvg) who added
local personalization layers to the shared model. In particular, the iFedAvg technique
implements a composition of a shared neural network fshared with local element-wise
affine layers fin and fout that allows learning the necessary shift from the client’s data
to the global model and making the values in fin and fout easily interpretable. After
training, learned shifts can be visualized to identify clients with incompatible data
samples. So far, iFedAvg was applied to a tabular dataset (2014 - 2016 West African

1https://christophm.github.io/interpretable-ml-book/
2https://distill.pub/2017/feature-visualization/

July 5, 2023 2/23



Ebola epidemic) since this type of data has clear and interpretable features. In the case
of images, however, one needs to either ”featurize” the input or use interpretable neural
networks in combination with iFedAvg.

In this work, we adapt ProtoPNet to FL and apply it to medical imaging data.
As summarized in Fig 2, clients learn their local prototypes as well as global ones in
communication with each other. The patches most activated by each of these prototypes
can be visualized and compared on each client’s local test sets. By comparing global
and local prototypes the clients can assess the interoperability of the data. Thus, we
can introduce interpretability to FL and directly examine the predictive impact of other
clients’ data without compromising clients’ privacy.

Our main contributions are as follows:

1. We formalize a set of use cases for interpretable distributed learning on imperfectly
interoperable biomedical image data sets containing hidden bias.

2. We introduce inDISCO adapting ProtoPNet to FL and compare its performance
to baseline models.

3. We demonstrate how inDISCO helps to identify a biased client in FL without
disclosing the data.

4. Finally, we propose a new approach to use inDISCO for interpretable personaliza-
tion.
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Figure 2. inDISCO architecture. Several clients (client1,..., clientk) wish to learn a
model in a federated setting via a SERVER. inDISCO, passes raw images through a
CNN to create embeddings of [H ×W ×D] in the latent space (Emb1, ..., EmbL), which
are divided up into H ×W image patches [1× 1×D]. These image patches (black) are
clustered around the closest prototypes (+) which are being learned for each image.
Importantly, the prototype is not an original patch of the image, but a vector
representing a class. Class1 of Clientk has systematic bias which contaminates the
prototype pool (+). Prototypes for each class are shared to the SERVER by each
client and aggregated to make global prototypes. These are then pushed back to the
clients. Classification is based on a similarity score computed between the prototypes
and the image patches. In the final panel, we see how global and local prototypes can
be compared to directly visualize shifts without sharing any original data.
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Materials and methods

Model architecture and problem formulation

The ProtoPNet architecture is presented in Fig. 1 The network is composed of the
following parts:

• a set of convolutional layers to extract and learn features;

• two additional 1× 1 convolution layers with D channels and the ReLU activation
after the first layer and Sigmoid after the second one;

• a prototype layer with a predefined number of prototypes. Each prototype is a
vector of size 1× 1×D with randomly initialized entries;

• a final fully connected layer with the number of input nodes equal to the number
of prototypes and the number of output nodes corresponding to the number of
classes. The weights indicate the importance of a particular prototype for a class.
They are initialized as in [15] such that the connection between the prototypes and
their corresponding class is 1 and -0.5 for the connections with the wrong classes.

We trained inDISCO, an FL adaptation of ProtoPNet, using either IID (unbiased,
identically distributed classes) or IIO (imperfectly interoperable with systematic bias in
a single class) data distribution among clients. A central server aggregates and updates
the models’ prototypes and weights of the final fully connected layer. Convolutional
weights in our setting always stay local.

By learning local prototypes, each client identifies the parts of its training images
most important for the task. In contrast, the global prototypes show the relevance for
all clients on average. Finally, by examining the difference between local and global
prototypes, a client can identify and quantify the presence of bias in its own or another
client’s dataset.

Notation. Let us adapt the notation from [15]. Given input xn, where n ∈ {1, ..., N},
each of N clients learns features with convolutional layers f(xn) and m prototypes
Pn = {pnj}mj=1. Given a convolutional output zn = f(xn), the j-th prototype of the

n-th client’s unit gpj ,n in the prototype layer gpn computes the squared L2 distance
between the prototype pnj and all the patches of zn and converts these distances into
similarity scores. These scores are then multiplied by the weight matrix whn in the final
fully connected layer hn followed by softmax normalization to output class probabilities.

Local training. Given a set of training images Dn = {(xni, yni)}ki=1, where k is a
number of images per client, each client aims to minimize the following objective:

min
Pn,wconv,n

1

k

k∑
i=1

CrsEntn(hn ◦ gpn ◦ f(xni), yni) + λ1Clstn + λ2Sepn, (1)

where wconv,n denotes the weights of the convolutional layers learned by client n, CrsEnt
is a cross-entropy loss that penalizes the misclassification, and the cluster and separation
costs are defined as follows:

Clstn =
1

k

k∑
i=1

min
j:pnj∈Pnyni

min
zn∈patches(f(xni))

||zn − pnj ||22 (2)

Sepn = −1

k

k∑
i=1

min
j:pnj /∈Pnyni

min
zn∈patches(f(xni))

||zn − pnj ||22 (3)

The minimization of the cluster cost (Clst) is needed to make each training image have a
latent patch that is close to at least one prototype of the correct class. At the same time,
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every latent patch of a training image is separated from the prototypes of the incorrect
class through the minimization of the separation cost (Sep). More detail ProtoPNet is
found in [15] and summarized in Fig. 1.

Federated update. At the global update step, the server performs simple averaging
of all the local prototypes Ploc = {Pn}Nn=1 and weights of the final layer Wh,loc =
{whn}Nn=1 to obtain the global parameters:

Pglob =
1

N

N∑
n=1

Pn (4) Wh,glob =
1

N

N∑
n=1

whn

(5)

and then sends them back to clients as shown in Fig. 2.
To visualize the prototypes, each client finds for each of the local and global prototypes

a patch among its training images from the same class that is mostly activated by the
prototype. It is achieved by forwarding the image through the trained ProtoPNet and
upsampling the activation matrix (the matrix of similarity scores obtained before global
max pooling) to the size of the input image. A prototype can be described as the smallest
rectangular area within an input image that contains pixels with an activation value
in the upsampled activation map equal to or greater than the 99th percentile of all
activation values in that map. [15].

Data

Birds dataset

Our experiments were conducted on CUB-200-2011 dataset [24] of 200 bird species from
which we took the first 20 classes. Preprocessing was performed as described by [15].
We introduced class-specific bias for one client by adding an emoji to the images of a
particular class at a specific location (SI, Fig. 9).

CheXpert

The main experiments presented in this work were done using CheXpert dataset [25], a
large public dataset of 224,316 chest X-rays of 65,240 patients collected from Stanford
Hospital and labeled by radiologists. Each image was labeled for the presence of 14
observations as positive, negative, or uncertain. To simplify the experiments and results
interpretation, we decided to stick with one-vs-rest setting using images with positive
labels for classes Cardiomegaly or Pleural effusion as a positive class and all other
images as a negative class. Cardiomegaly is a health condition characterized by an
enlarged heart, and pleural effusion is an accumulation of fluid between the visceral and
parietal pleural membranes that line the lungs and chest cavity. This setting, however,
resulted in a large data imbalance (7 and 1.6 times for cardiomegaly and pleural effusion,
respectively). To address this issue, we decreased the size of a negative class in the
training set by undersampling to make it equal to the size of a positive class. The
final training sets had 48,600 and 37,088 images for cardiomegaly and pleural effusion
classification, respectively. The test sets were left imbalanced.

In the case of medical data, we used two ways of creating IIO dataset for one of the
clients:

• adding a simple emoji to a positive class (Fig. 3);

• adding chest drains to a positive class as a more real-world bias (Fig. 4). To
achieve this, we replaced images in a class Pleural effusion with X-rays labeled for
the presence of chest drains [26].
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The real-world use case can arise as pleural effusions are often drained. Drain
positions are routinely checked with a post-insertion X-ray. Thus, a model may learn to
diagnose pleural effusion by detecting a chest drain, rather than the pathology.

(a) Unbiased (b) Biased

Figure 3. Examples of unbiased and biased (imperfectly interoperable) images from
CheXpert dataset for class Cardiomegaly. The biased client (b) has a red emoji of a
mouse in the upper left corner.

(a) Unbiased (b) Biased

Figure 4. Examples of unbiased and biased (imperfectly interoperable) images from
CheXpert dataset for class Pleural effusion. The biased client (b) has a chest drain
indicated by an arrow.

Experimental details

i. Centralized baseline. As a baseline, we follow the architecture and optimization
parameters from the ProtoPNet paper [15] (using the VGG19 [27] or DenseNet [28]
implementation pretrained on ImageNet [29]) to learn a centralized model with centralized
prototypes (CMCP) on the whole dataset. We used ten prototypes of size 1× 1× 128
per class. We report average accuracy for birds data and balanced average accuracy for
the imbalanced CheXpert dataset:

Balanced accuracy =
Sensitivity + Specificity

2
(6)

ii. IID-FL local baseline. We made an IID partition of the data over four clients
and trained local ProtoPNets with local prototypes for each (LMLP).

iii. IID-FL global baseline. Using the FL setup above, global models with
global prototypes (GMGP) were trained according to the scheme depicted in Fig 2.
The training is composed of three or six communication rounds between the clients
and the server. The server initializes a ProtoPNet model and sends it to the clients
who learn LMLP. After five epochs, a subset of LP is communicated to the server and
aggregated. Importantly, during this training stage, each client keeps the pre-trained
convolutional weights frozen and trains two additional convolutional layers. Each of the
next communication rounds includes the following steps:
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• Local training. Each client trains convolutional layers, prototype layer, and final
fully connected layer locally (on their own dataset).

• Local prototypes. A set of local prototypes Ploc and weights Wloc is sent to
the server after every ten epochs.

• Global prototypes. The server aggregates local prototypes by averaging to
create a set of ten global prototypes Pglob and weights Wh,glob. These are shared
back to each client to iterate training.

• Interpretability. Each client visualizes interoperability shifts by projecting each
prototype onto the nearest latent training patch from the same class and then
optimizing the final layer to improve accuracy.

It is worth noting that after training, we have as many global models as clients. All
these models have global prototypes and different wconv,n whose updates always stayed
locally. Importantly, we purposefully limit the global training of convolutional layers, for
the purpose of comparing interoperability, thus the performance of GMGP is expected
to be lower than CMCP.

iv. IIO-FL Experiment. Finally, we trained LMLPb and GMGPb in an FL
setting with three unbiased IID clients and one IIO client (with systematic bias in one
class (Fig. 3, 4 and Fig. 9 in SI). We visually inspect the prototypes learned locally and
globally to detect IIO shifts between clients without sharing any original data.

Results

Quantitative results

IID setting

The quantitative results for CMCP (i.e. ProtoPnet baseline), LMLP, and GMGP trained
on unbiased IID data for birds and CheXpert datasets are presented in Table 1 and
Table 2, respectively. For the birds data, CMCP achieves an accuracy of 86.02 % and
LMLP and GMGP perform slightly worse with 82.76 and 81.25 % accuracy, respectively.

Models learned on the CheXpert dataset demonstrate worse performance in terms
of the absolute values of balanced accuracy. However, the models were not specifically
optimized for performance, but rather to create an efficient experimental setup on which
we can visualize relative differences. For the CheXpert dataset, CMCP gives 73.61
% and 75.36 % balanced accuracy for cardiomegaly and pleural effusion classification,
respectively. LMLP and GMP achieve 70.70 and 70.85 % for cardiomegaly and 71.70 and
74.53 % for pleural effusion classes. The values of classification sensitivity and specificity
used to compute balanced accuracy can be found in SI Table 6.

Table 1. Centralized vs FL IID settings for birds. Classification accuracies for
CMCP (centralized model/prototype), LMLP (local model/prototype), and GMGP
(global model/prototype) trained without data bias on CUB200-2011 dataset. The
mean computed over four clients is shown with standard deviation.

Model CMCP LMLP GMGP

Accuracy (% ±SD) 86.02 82.76 ±1.14 81.25 ±0.49

IIO setting

In this case, we compare models’ performance separately on unbiased and biased data
(Table 3 and Table 4). We can see that for the birds dataset, both LMLPb and GMGPb
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Table 2. Centralized vs FL IID settings for X-rays. Classification balanced
accuracies for CMCP (centralized model/prototype), LMLP (local model/prototype),
and GMGP (global model/prototype) trained without data bias on CheXpert dataset
for cardiomegaly and pleural effusion classes. The mean computed over four clients is
shown with standard deviation.

Model CMCP LMLP GMGP

Cardiomegaly classification

Balanced accuracy (%, ±SD) 73.61 70.70 ±0.44 70.85 ±0.45

Pleural effusion classification

Balanced accuracy (%, ±SD) 75.36 71.70 ±0.37 74.53 ±0.35

perform better on biased (85.8 and 83.3 %, respectively) dataset than on the unbiased
one (76.1 and 75.3 % for LMLPb and GMGPb, respectively). In addition to average
accuracy over all classes, we also show accuracy for a biased class. In this case, the
difference in performance on these two datasets is clearer: LMLPb achieves 100.0 %
accuracy on the biased dataset for a biased class and 0.0 % on the unbiased dataset,
and GMGPb gives 85.7 and 4.8 %, respectively.

We can see a similar behavior of models trained on medical data to the ones trained
on bird images. Namely, both LMLPb and GMGPb give 100.0 % accuracy on biased
data and 50.0 % on unbiased one in the case of cardiomegaly classification. For pleural
effusion classification, these models achieve 77.31 and 66.15 % of balanced accuracy on
biased data and 49.18 and 50.33 % on unbiased set. Sensitivity and specificity for IIO
setting are shown in SI Table 7.

Table 3. Effect of IIO bias in FL for birds. Classification accuracies for local and
global models trained in an FL setting on the CUB200-2011 dataset that has a biased
client. For each model, the value in the left subcolumn corresponds to the test set of a
biased client, and in the right subcolumn, there is an average value over the test sets of
unbiased clients with standard deviation where possible. Performance is shown from
bad to good.

Model LMLPb GMGPb

Test set Biased Unbiased Biased Unbiased

all classes 85.8 76.1±1.7 83.3 75.3±1.2
biased class 100.0 0.0 85.7 4.8±4.7

Qualitative results

This section presents the prototypes learned in the IID and IIO FL setting for both
datasets (Fig. 5, 6, 7). More examples of prototypes for all models can be found in SI
(Fig. 10 - 21).

For the birds dataset, local and global prototypes (Fig. 5) learned on unbiased
data, activate a meaningful patch in both biased and unbiased test images (bird’s head).
LMLPb, however, looks at the emoji in the lower left corner in the biased image and at
the same corner in the unbiased test image. Interestingly, GMGPb does not activate the
emoji in the biased image but looks at the nearby area.

We see a similar tendency for the CheXpert data. In the cardiomegaly class (Fig. 6),
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Table 4. Effect of IIO bias in FL for X-rays. Classification balanced accuracies for
local and global models trained in an FL setting with one biased client on the CheXpert
dataset for cardiomegaly and pleural effusion classes. For each model, the value in the
left subcolumn corresponds to the test set of a biased client, and in the right subcolumn,
there is an average value over the test sets of unbiased clients with standard deviation
where possible. Performance is shown from bad to good.

Model LMLPb GMGPb

Test set Biased Unbiased Biased Unbiased

Cardiomegaly classification

Balanced accuracy (%, ±SD) 100.0 50.0±0.0 100.0 50.0±0.0

Pleural effusion classification

Balanced accuracy (%, ±SD) 77.31 49.18±0.41 66.15 50.33±0.38

local and global unbiased models activate the area of the enlarged heart while biased
models look at the emoji in the upper left corner of a test image. In the pleural effusion
class (Fig. 7), unbiased models activate the bottom of the lungs in an X-ray while
biased ones (trained on the images with chest drains) highlight drains that can locate in
different parts of the lungs.

We discuss the prototypes presented here in the next section.
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Figure 5. Prototypes learned in IIO FL setting for birds. Examples of a test
image with bounding boxes indicating the most activated patches by the prototypes
learned locally and globally on unbiased and biased CUB200-2011 datasets in an
IIO-FL setting.

The prototypes learned locally (by LMLP and LMLPb) and globally (by GMGPb)
can be also compared by computing the Euclidean distance between them for each client.
These results, normalized between 0 and 1, are shown in Fig. 8. We can see that local
and global prototypes for unbiased clients differ much less than those for the biased
client. The distances for pleural effusion classification can be found in SI Fig. 22.
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Figure 6. Prototypes learned in IIO FL setting for X-rays. Examples of a test
image with bounding boxes indicating the most activated patches by the prototypes
learned locally and globally on unbiased and biased CheXpert datasets in an IIO-FL
setting for cardiomegaly classification.

Figure 7. Prototypes learned in IIO FL setting for X-rays. Examples of a test
image with bounding boxes indicating the most activated patches by the prototypes
learned locally and globally on unbiased and biased CheXpert datasets in an IIO-FL
setting for pleural effusion classification.
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Figure 8. Euclidean distances between local and global (IIO FL setting) prototypes for
cardiomegaly classification for each client after min-max normalization.

Discussion

Birds dataset

We begin the analysis of our results with the model benchmark dataset of bird species.
As expected local models perform worse than a centralized model due to the smaller
dataset (Table 1). As the training of the global model is purposely restricted to highlight
differences in clients’ data, we do not expect the GMGP to significantly improve
upon LMLP, which is the case. Indeed, only part of the GMGP network is updated
globally (prototypes Pn and weights whn), while the convolutional layers are kept local.
Nevertheless, the prototypes learned in these three settings are rather similar as can be
seen in SI, Fig.10.

Bias injection into one client’s dataset has a strong effect on model performance
and prototypes (Table 3). Both local LMLPb and global GMGPb expectedly perform
much worse on unbiased data than on biased one. Notably, the local model gives 100.0%
accuracy for a biased class on a dataset with emoji and 0.0% accuracy for this class
on unbiased data. This clearly indicates that the model assigns this class based on the
presence of bias and thus suffers catastrophic failure in the absence of bias. Indeed,
as shown in Figure 5, LMLP (trained on unbiased data) and LMLPb activate totally
different patches on the same test image with and without emoji.

Communication of prototypes with other clients brings slight improvement to the
model’s performance (Table 3). GMGPb has 4.76% accuracy for biased class on unbiased
data and 85.71% on biased one. From Figure 5, we can see that the global model for a
biased client does not activate the emoji as its local counterpart but still looks at a less
informative patch close to it. Global model for good clients, however, looks at the bird’s
head as it does the local one. The distance between these prototypes can not only be
visualized, but also computed, meaning that it could be used to derive a personalization
weight that is visually interpretable.

The negative effect of data bias is additionally demonstrated in SI Table 5. Here, we
show how different models predict a class for biased and unbiased test images.

CheXpert dataset

Experiments on X-ray images demonstrate a more real-world use case with its accom-
panying challenges. The first difficulty we faced was an inability to perform multiclass
classification to distinguish all 14 classes in the original dataset since prototypes for
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many of them are expected to activate similar regions in the images.
To simplify the task on this complex dataset, we carried out a binary one-vs-rest

classification for cardiomegaly and pleural effusion classes. These classes were chosen due
to the expected distinct localization of prototypical regions (near a heart and bottom
part of the lungs) in comparison to some other classes (for example, lung lesions and
pneumonia prototypical parts can be spread throughout the lungs). In this setting,
however, we met a common for medical data challenge, namely data imbalance. To
tackle this issue, we undersampled a negative class in the training set to make it equal to
the size of a positive class. We kept the test set as it is and reported balanced accuracy
instead of ordinary accuracy.

IID FL setting. As we can see from Table 2, though overall balanced accuracy
values for the models trained on unbiased data are low, they follow the same tendency
as accuracies for the bird dataset. Local and global models for both classes perform
expectedly worse than corresponding centralized models.

The prototypes learned in this setting (see SI) present class characteristic regions
clear for humans. For example, in SI Fig. 12 we can see that in order to classify an
image as cardiomegaly, a centralized model looks at the whole enlarged heart or at the
collarbone level in the center pointing out the extended aorta characteristic for this
condition. As for the pleural effusion classification, most prototypes activate the lower
part of the lung where fluid accumulates in this disorder.

IIO FL setting. For the medical dataset, we tried two different ways of introducing
bias into one client’s dataset. We started with a simple setting similar to the one we
had for the birds dataset, namely, we added a small emoji to the left upper corner of
images in the cardiomegaly class. In this case, both LMLPb and GMGPb solely rely on
the presence of bias to predict a positive class resulting in 100.0 % balanced accuracy
for test on biased data and 50.0 % on unbiased data.

Fig. 6 demonstrates this result by showing parts of a test image activated by local
and global models trained on biased and unbiased data. It is interesting to note that for
this binary classification task, adding bias to a positive class also changes the prototypes
for a negative class. This effect can be seen in SI Fig. 14 and 16, where prototypical
parts for a negative (unbiased) class turned out to be left upper regions where there
was an emoji for a positive class. Obviously, these prototypes have no practical value in
classifying cardiomegaly.

To experiment with more practically relevant data bias, we paid attention to the fact
that often patients with pleural effusion get chest drains to remove the fluid from their
lungs. Thus the presence of chest drains in X-ray images can serve as bias for pleural
effusion class. We trained local and global models in the setting where one client has
images with chest drains in the positive class (note that these images do not necessarily
have actual pleural effusion) and any other X-rays without chest drains in the negative
class (in the same way, these images may or may not have pleural effusion).

As we can see from Table 4, LMLPb fails on predicting pleural effusion in the absence
of chest drain (unbiased data), and GMGPb performs slightly better on this dataset
due to communication with unbiased clients. Note, that in opposite to the emoji bias,
the chest drain is more difficult to learn and it does not lead to 100.0 % accuracy on
biased data. LMLPb achieves 77.31 % accuracy and GMGPb has 66.15 % on biased
data. This large difference in LMLPb and GMGPb balanced accuracy shows the benefit
of communication to identify systemic bias in clients’ data.

Fig. 7 demonstrates which regions in biased and unbiased images are most important
to classify pleural effusion from the point of view of local and global models trained with
or without data bias. We can see that indeed LMLPb prefers to activate an image patch
with a chest drain as important for pleural effusion class instead of an actually import
bottom area of the lung which is activated by the local and global models trained on
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unbiased datasets. GMGPb, however, does not look at the same area as LMLPb but still
activates a patch in the upper lungs region rather than the lower one.

The difference between local and global prototypes for each client is also clearly
seen in Fig. 8 and SI Fig. 22 showing the Euclidean distance between them. The
distances are much smaller for the unbiased clients than for the biased one. Sharing
these distances with the server can help to identify a biased client and take measures to
avoid the negative effect of low data interoperability on global models.

Privacy aspects

As mentioned before, privacy is a key advantage of FL. Nevertheless, sharing models’
parameters can still compromise clients’ data due to the possibility of training an
adversarial network and retrieving the actual data from it [30]. In the case of our
inDISCO model, however, this risk is lower since clients send to the server only their
prototypes and weights of the final layer always keeping convolutional weights local.
Additional steps such as encryption of the shared parameters can be done to better
preserve privacy.

Moreover, if clients decide to further examine the differences in their datasets they
can share the prototypes projected on their training or test set after defining their
privacy budget, e.g., the number and size of prototypical patches that can be controlled
during training.

Limitations and future work

This work develops an approach for interpretable identification of data interoperability
in FL for imaging data. To the best of our knowledge, this is the first attempt in this
research direction, and thus there is still space for future improvements. The following
steps can be done to address existing limitations:

1. More complex biased settings can be used to move the experiments closer to the
real-world scenario;

2. So far experiments with only four clients have been done thus scaling up is
important;

3. Since the quantitative performance of the models trained for CheXpert data is
not good enough, model architecture adjustments, additional data preprocessing,
and/or optimization are necessary;

4. It would be interesting to try other medical datasets to evaluate the robustness of
our approach;

5. Though clients do not share their actual data and keep convolutional updates
locally, the total absence of privacy leakage is not guaranteed, and thus comparison
of our inDISCO method with other FL approaches in terms of privacy would be
useful.

Conclusion

inDISCO is a novel extension of ProtoPnet, which allows interpretable and privacy-
preserving identification, attribution, and quantification of data bias in federated learning
for imaging data. inDISCO creates transparency from black box data without compromis-
ing privacy which gives this approach a potential for application in the privacy-sensitive
medical domain.
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The part of this work with the results obtained on birds data was submitted to
the ICML 2023 workshop ”Federated Learning and Analytics in Practice: Algorithms,
Systems, Applications, and Opportunities”. The submitted paper can be found in SI.
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Supporting information

(a) Unbiased (b) Biased

Figure 9. Examples of unbiased and biased (imperfectly interoperable) images from
CUB200-2011 dataset used in this work. The biased client (b) has a red emoji of a
parrot in the lower left corner.

Figure 10. Examples of training images with bounding boxes indicating centralized,
local, and global prototypes learned on unbiased CUB200-2011 data.
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Figure 11. Examples of training images with bounding boxes indicating local and
global prototypes learned on biased CUB200-2011 data.

Table 5. Prediction results of local and global models for two biased and two unbiased
test images from birds dataset coming from biased and unbiased during training classes.

Model
Biased class Unbiased class

Test image

Unbiased Biased Unbiased Biased

LMLP cor cor cor cor

LMLPb incor cor cor incor

GMGP cor cor cor cor

GMGPb incor cor cor incor

Table 6. Classification sensitivity and specificity for CMCP (centralized
model/prototype), LMLP (local model/prototype), and GMGP (global
model/prototype) trained without data bias on CheXpert dataset for cardiomegaly and
pleural effusion classes. The mean computed over four clients is shown with standard
deviation.

Model CMCP LMLP GMGP

Cardiomegaly classification

Sensitivity, ±SD 0.60 0.61 ±0.04 0.58 ±0.03

Specificity, ±SD 0.87 0.80 ±0.03 0.84 ±0.03

Pleural effusion classification

Sensitivity, ±SD 0.76 0.58 ±0.01 0.83 ±0.02

Specificity, ±SD 0.74 0.86 ±0.00 0.66 ±0.02
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Table 7. Classification sensitivity and specificity for local and global models trained in
an IIO FL setting with one biased client on the CheXpert dataset for cardiomegaly and
pleural effusion classes. For each model, the value in the left subcolumn corresponds to
the test set of a biased client, and in the right subcolumn, there is an average value over
the test sets of unbiased clients with standard deviation where possible.

Model LMLPb GMGPb

Test set Biased Unbiased Biased Unbiased

Cardiomegaly classification

Sensitivity, ±SD 1.0 0.0±0.0 1.0 0.0±0.0

Specificity, ±SD 1.0 1.0±0.0 1.0 1.0±0.0

Pleural effusion classification

Sensitivity, ±SD 0.58 0.03 ±0.00 0.42 0.12 ±0.01

Specificity, ±SD 0.97 0.95 ±0.00 0.90 0.88 ±0.01

Figure 12. Examples of training images with bounding boxes indicating centralized
prototypes learned on unbiased CheXpert data for cardiomegaly classification.

July 5, 2023 18/23



Figure 13. Examples of training images with bounding boxes indicating local
prototypes learned on unbiased CheXpert data for cardiomegaly classification.

Figure 14. Examples of training images with bounding boxes indicating local
prototypes learned on biased CheXpert data for cardiomegaly classification.
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Figure 15. Examples of training images with bounding boxes indicating global
prototypes learned on unbiased CheXpert data for cardiomegaly classification.

Figure 16. Examples of training images with bounding boxes indicating global
prototypes learned on biased CheXpert data for cardiomegaly classification.
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Figure 17. Examples of training images with bounding boxes indicating centralized
prototypes learned on unbiased CheXpert data for pleural effusion classification.

Figure 18. Examples of training images with bounding boxes indicating local
prototypes learned on unbiased CheXpert data for pleural effusion classification.
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Figure 19. Examples of training images with bounding boxes indicating local
prototypes learned on biased CheXpert data for pleural effusion classification.

Figure 20. Examples of training images with bounding boxes indicating global
prototypes learned on unbiased CheXpert data for pleural effusion classification.
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Figure 21. Examples of training images with bounding boxes indicating global
prototypes learned on biased CheXpert data for pleural effusion classification.

Figure 22. Euclidean distances between local and global (IIO FL setting) prototypes
for pleural effusion classification for a biased and unbiased client after min-max
normalization.
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inDISCO: INterpretable DIStributed COllaborative learning for images

Anonymous Authors1

Abstract

DIStributed COllaborative (DISCO) learning al-
lows several data owners (clients) to learn a joint
model without sharing data. While this approach
could transform data usage in privacy-sensitive
domains such as healthcare, the restricted access
to each client’s data limits interpretability and may
conceal bias or interoperability mismatches that
could compromise model performance. This is-
sue is particularly important for image data since
most deep neural networks for images are al-
ready black-box models. We address this problem
with inDISCO, which adapts a well-known inter-
pretable prototypical part learning network (Pro-
toPNet) to a federated setting allowing members
of the federation to directly visualize the differ-
ences in the features learned from each client. We
show that it can identify, attribute, quantify, and
potentially correct bias in distributed collabora-
tion without sharing any data. This work could
be extended to interpretable personalization in
federated learning.

1. Introduction
“What you can’t see can’t hurt you...?” — Proverb

As the bigness of big data becomes ever bigger and more
granular, so too does its potential power, value, risk, and
the legal constraints of sharing it. To address this limitation,
federated learning (FL) was proposed by (McMahan et al.,
2017) to allow multiple data owners (clients) to collabo-
ratively train a model while keeping their datasets locally.
While FL is potentially transformative for domains with
privacy-sensitive data such as healthcare, the privacy gained
comes at a major cost to transparency. Indeed, the real-world
use of deep learning is already limited by black box models,
and FL compounds the issue with black box data. Visualiz-
ing data is especially important when applied to real-world

1Anonymous Institution, Anonymous City, Anonymous Region,
Anonymous Country. Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

data which is often biased or imperfectly interoperable. Un-
derstanding differences will allow an informed selection of
collaborators and enable explainable predictions.

Problem setting. The inability to visualise data across
clients in FL is particularly problematic for imaging data
since the deep learning approaches for this modalitiy are
already poorly interpretable. This combination of black box
model and black box data, obfuscates both the reasoning
process of the model as well as the quality of its data. This
work addresses the question of how we can achieve data
transparency without compromising its privacy. Specifically,
we ask, how can we identify, quantify, explain, and even
correct for bias in unseen imaging data in the FL setting
while preserving privacy?

We adapt a well-known interpretability method introduced
by Chen et al. (2019), called prototypical part learning
(ProtoPNet). Their implementation (Appendix, Fig 3)
uses a CNN to create a set of patches in the latent space,
a prototypical patch is learned from this set. Classifica-
tion then relies on a similarity score computed between this
learned prototype and a latent representation of a test image.
A prototype can be visualized by highlighting the patch
most activated by this prototype.

We propose to adapt ProtoPNet to FL. As summarized in
Fig 1, clients each learn their own local prototypes as well
as globally in communication with each other. The patches
most activated by each of these prototypes can be visualized
and compared on each client’s local test set. By comparing
global and local prototypes the clients can assess the interop-
erability of the data. Thus, we can introduce interpretability
to FL and directly examine the predictive impact of other
data without compromising clients’ privacy.

Our main contributions are as follows:

1. We formalize a use case and create an imperfectly
interoperable benchmark image dataset.

2. We introduce inDISCO adapting ProtoPNet to FL and
compare its performance to baseline models.

3. We demonstrate how inDISCO helps to identify a bi-
ased client in FL without disclosing the data.

4. Finally, we propose a new approach to use inDISCO
for interpretable personalization.
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Figure 1. inDISCO architecture. Several clients (client1,..., clientk) wish to learn a model in a federated setting via a SERVER.
inDISCO, passes raw images through a CNN to create embeddings of size [H ×W ×D] in the latent space (Emb1, ..., EmbL), which
are divided up into H ×W image patches [1 · 1 ·D]. Prototypical patches (black) are clustered and a prototype (+) is learned for each
image. Class1 of Clientk has systematic bias which contaminates the prototype pool (+). Ten prototypes for each class are shared to
the SERVER by each client and aggregated to make ten global prototypes. These are then pushed back to the clients. Classification
is based on a similarity score computed between the prototype and the image patches. In the final panel, we see how global and local
prototypes can be compared to directly visualize shifts without sharing any original data.

Related work. Explaining how neural networks make pre-
dictions is critical to ensuring trust in real-world use cases.
This is particularly important in the medical imaging do-
main, for example, where evaluating the alignment of logical
plausibility of a prediction helps protect patients against mis-
diagnosis (Ribeiro et al., 2016; Lundberg & Lee, 2017; Sel-
varaju et al., 2017; Simonyan et al., 2014; Singh et al., 2020;
Shrikumar et al., 2017; Chen et al., 2021; 2019). There are
many posthoc techniques that aim to explain the predictions
made by black-box models. The most popular methods
are LIME (Ribeiro et al., 2016), SHAP (Lundberg & Lee,
2017), Feature visualization 1, and saliency mapping with
Grad-CAM (Selvaraju et al., 2017).

In opposition to black-box models, there exist inherently in-
terpretable models whose decision-making process is made
to be transparent. An example of such a model is a prototyp-
ical part neural network ProtoPNet (Chen et al., 2019)
that bases classification on how similar parts of an image
in the test set are to a prototypical part of an image in the
train set (Summarized in Appendix, Fig 3). ProtoPNet
showed performance comparable with the state-of-the-art
black-box deep neural networks on a popular benchmark
data set while being inherently interpretable.

In FL, clients may be imperfectly interoperable (IIO), where
the biggest risk is the presence of systematic bias in one
client, resulting in label leakage. For instance, a set of X-
rays, where the diagnosis is written on the image. The biased
features learned from this client would contaminate the fea-

1https://distill.pub/2017/feature-visualization/

ture pool in an FL setting and decrease the performance of a
global model. One of the approaches to address this issue is
adding local personalization layers to the model. This idea
is presented in the works (Arivazhagan et al., 2019) (FedPer)
and (Roschewitz et al., 2021) (iFedAvg). In particular, iFe-
dAvg is also designed to identify and visualize the clients
and features causing the shift through local feature-wise
affine layers fin and fout which can learn the feature-wise
differences between clients compared with the global model,
without sharing any data. While this is interpretable for tab-
ular data (where features are intelligible), the same is not
true for images. We propose applying ProtoPNet to this
IIO-FL setting to best isolate interpretable features from
images that can be compared and interpreted.

2. Problem formulation
Context. We trained inDISCO in an FL setting using either
IID (unbiased, identically distributed classes) or IIO (imper-
fectly interoperable with systematic bias in a single class)
data distribution among clients. A central server aggregates
and updates the models’ parameters. By learning local pro-
totypes, each client identifies the parts of its training images
most important for the task. In contrast, the global proto-
types show the relevance for all clients on average. Finally,
by examining the difference between local and global pro-
totypes, a client can identify and quantify the presence of
bias in its own or another client’s dataset. Optionally shar-
ing local prototypes among clients can further attribute the
origin of bias. Taken together this information can guide ap-
propriate action, to avoid the negative effect of data bias on

2
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a global model, such as client selection or personalization
by penalizing the learning of biased features.

Notation. Let us adapt the notation from (Chen et al., 2019).
Given input xn, where n ∈ {1, ..., N}, each of N clients
learns features with convolutional layers f(xn) and m pro-
totypes Pn = {pnj}mj=1. Given a convolutional output
zn = f(xn), the j-th prototype of the n-th client’s unit
gpj ,n in the prototype layer gpn computes the squared L2

distance between the prototype pnj and all the patches of
zn and converts these distances into similarity scores. These
scores are then multiplied by the weight matrix whn in the
final fully connected layer hn followed by softmax normal-
ization to output class probabilities.

Local training. Given a set of training images Dn =
{(xni, yni)}ki=1, where k is a number of images per client,
each client aims to minimize the following objective:

min
Pn,wconv,n

1

k

k∑
i=1

CrsEntn(hn ◦ gpn ◦ f(xni), yni)+

+ λ1Clstn + λ2Sepn, (1)

where wconv,n denotes the weights of the convolutional lay-
ers learned by client n, CrsEnt is a cross-entropy loss that
penalizes the misclassification, and the cluster and separa-
tion costs are defined as follows:

Clstn =
1

k

k∑
i=1

min
j:pnj∈Pnyni

min
zn∈patches(f(xni))

||zn − pnj ||22

(2)

Sepn = −1

k

k∑
i=1

min
j:pnj /∈Pnyni

min
zn∈patches(f(xni))

||zn − pnj ||22

(3)
The minimization of the cluster cost (Clst) is needed to make
each training image have a latent patch that is close to at
least one prototype of the correct class. At the same time,
every latent patch of a training image is separated from the
prototypes of the incorrect class through the minimization
of the separation cost (Sep). More detail ProtoPNet is found
in Chen et al. (2019) and summarized in Appendix Fig3.

Federated update. At the global update step, the
server performs simple averaging of all the local pro-
totypes Ploc = {Pn}Nn=1 and weights of the final layer
Wh,loc = {whn}Nn=1 to obtain the global parameters:

Pglob =
1

N

N∑
n=1

Pn (4) Wh,glob =
1

N

N∑
n=1

whn (5)

and then sends them back to clients as shown in Fig 1.

3. Experimental setup
3.1. Dataset

Our inDISCO model was trained and evaluated on CUB-
200-2011 dataset (Wah et al., 2011) of 200 bird species from
which we took 20 classes. Preprocessing was performed
as described by Chen et al. (2019). We introduced class-
specific bias for one clients by adding an emoji to the images
of a particular class (Appendix, Fig. 4). The repository can
be found here (link provided at submisssion).

3.2. Experiments

i. Centralized baseline. As a baseline, we follow the ar-
chitecture of ProtoPNet (using the VGG19 (Simonyan &
Zisserman, 2015) implementation pretrained on ImageNet
(Deng et al., 2009)) to learn a centralized model with central-
ized prototypes (CMCP) on the whole dataset. We learned
10 prototypes of size [1 · 1 · 128] per class.

ii. IID-FL local baseline. We made an IID partition of
the data over four clients and trained local ProtoPNets with
local prototypes for each (LMLP).

iii. IID-FL global baseline. Using the FL setup above,
global models with global prototypes (GMGP) were trained
according to the scheme depicted in Fig 1. The training is
composed of six communication rounds between the clients
and the server. The server initializes a ProtoPNet model
and sends it to the clients. The clients learn LMLP. After
5 epochs, a subset of LP are communicated to the server
and aggregated. Importantly, during this training stage, each
client keeps the pretrained convolutional weights frozen and
trains two additional convolutional layers. Each of the next
communication rounds includes the following steps:

• Local convolutional layers. Each client trains convo-
lutional layers locally (on their own dataset).

• Local prototypes. The local latent representation of
each image is divided into image patches and a local
prototypical patch of each image is used to learn a set
of ten local prototypes Ploc and weights Wloc, which
are sent to the server after each ten epochs.

• Global prototypes. The server aggregates local pro-
totypes by averaging to create a set of ten global pro-
totypes Pglob and weights Wh,glob. These are shared
back to each client to iterate training.

• Interpretability. Each client visualizes interoperabil-
ity shifts by projecting each prototype onto the nearest
latent training patch from the same class and then opti-
mize the final layer to improve accuracy.

After training, we have as many global models as clients. All
these models have global prototypes and different wconv,n

whose updates stayed locally. Importantly, we purposefully
limit the global training of convolutional layers, for the
purpose of comparing interoperabilty, thus the performance

3
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of GMGP is expected to be lower than CMCP.

iv. IIO-FL Experiment. Finally, we trained LMLPb and
GMGPb in an FL setting with three unbiased IID clients and
one IIO client (with systematic bias in one class (Appendix
Fig 4). We visually inspect the prototypes learned locally
and globally to detect IIO shifts between clients without
sharing any original data.

4. Results
4.1. IID setting.
The average accuracy for CMCP (i.e. ProtoPnet base-
line), LMLP, and GMGP trained on unbiased IID data are
presented in Table 1. As expected local models perform
worse than a centralized model due to the smaller dataset.
As the training of the global model is purposely restricted to
highlight differences in clients’ data, we do not expect the
GMGP to significantly improve upon LMLP, which is the
case. Indeed, only part of the GMGP network is updated
globally (prototypes Pn and weights whn), while the convo-
lutional layers are kept local. Nevertheless, the prototypes
learned in these three settings are rather similar as can be
seen in Appendix, Fig.5.

Table 1. Centralized vs FL IID settings. Classification accu-
racies for CMCP (centralized model/prototype), LMLP (local
model/prototype), and GMGP (global model/prototype) trained
without data bias. The mean computed over four clients are shown
with standard deviation.

MODEL CMCP LMLP GMGP

ACCURACY (% ±SD) 86.02 82.76 ±1.14 81.25 ±0.49

4.2. IIO-FL setting.
Bias injection into one client’s dataset has a strong effect on
model performance and prototypes. In this case, we com-
pare models’ accuracy separately on unbiased and biased
data and in addition to average accuracy over all classes,
we show accuracy for a biased class. Table 2 Both lo-

Table 2. Effect of IIO bias in FL. Classification accuracies for
local and global models trained in an FL setting which has a biased
client. For each model, the value in the left subcolumn corresponds
to the test set of a biased client, and in the right subcolumn, there is
an average value over the test sets of unbiased clients with standard
deviation where possible. Performance is shown from bad to good.

MODEL LMLPb GMGPb

TEST SET BIASED UNBIASED BIASED UNBIASED

ALL CLASSES 85.8 76.1±1.7 83.3 75.3±1.2
BIASED CLASS 100.0 0.0 85.7 4.8±4.7

cal LMLPb and global GMGPb expectedly perform much
worse on unbiased data than on biased one. Notably, the

local model gives 100.0% accuracy for a biased class on
a dataset with emoji and 0.0% accuracy for this class on
unbiased data. This clearly indicates that the model assigns
this class based on the presence of bias and thus suffers
catastrohpic failure in the absence of bias. Indeed, as shown
in Figure 2, LMLP (trained on unbiased data) and LMLPb

activate totally different patches on the same test image with
and without emoji.

Communication of prototypes with other clients brings
slight improvement to the model’s performance. GMGPb

has 4.76% accuracy for biased class on unbiased data and
85.71% on biased one. From Figure 2, we can see that the
global model for a biased client does not activate the emoji
as its local counterpart but still looks at a less informative
patch close to it. Global model for good clients, however,
looks at the bird’s head as it does the local one. The distance
between these prototypes can not only be visualised, but
also computed, meaning that it could be used to derive a
personalization weight which is visually interpretable.

The negative effect of data bias is additionally demonstrated
in Appendix Table 3. Here, we show how different models
predict a class for biased and unbiased test images.
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(self-learned)
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(other client)
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PROTOTYPES

Figure 2. Prototypes learned in IIO FL setting. Examples of
a test image with bounding boxes indicating the most activated
patches by the prototypes learned locally and globally on unbiased
and biased datasets in an IIO-FL setting.

5. Discussion
inDISCO is a novel extension of ProtoPnet, which al-
lows interpretable and privacy-preserving identification, at-
tribution, and quantification of data bias in federated learn-
ing. The bias can be visualized as well as quantified, which
holds potential for creating a visually interpretable person-
alization scheme. Thus, inDISCO creates transparency
from blackbox data without compromising privacy. Indeed,
the only elements shared with the server are prototypes
computed from a latent space representation. The shared
elements can be tailored to various privacy budgets by set-
ting parameters such as the number of prototypes per class,
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the size of a prototype, and the number of communication
rounds.
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A. Appendix
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Figure 3. ProtoPnet architecture. This is a centralized setting with no clients. ProtoPnet, passes raw images through a CNN
to create embeddings of size [H ×W ×D] in the latent space (Emb1, ..., EmbL), which are divided up into H ×W image patches
[1 · 1 ·D]. Prototypical patches (black) are clustered and a prototype (+) is learned for each image. Classification is based on a similarity
score computed between the prototype and the image patches. In the final panel, we see prototypes can be visualized to directly.

(a) Unbiased (b) Biased

Figure 4. Imperfectly interoperable images used in this work. The biased client (b) has a red emoji of a parrot in the lower left corner.
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Figure 5. Examples of training images with bounding boxes indicating centralized, local, and global prototypes learned on unbiased data.

Table 3. Prediction results of local and global models for two biased and two unbiased test images coming from biased and unbiased
during training classes.

MODEL
BIASED CLASS UNBIASED CLASS

TEST IMAGE

UNBIASED BIASED UNBIASED BIASED

LMLP COR COR COR COR

LMLPb INCOR COR COR INCOR

GMGP COR COR COR COR

GMGPb INCOR COR COR INCOR

Figure 6. Examples of training images with bounding boxes indicating local and global prototypes learned on biased data.
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