inDISCO: INterpretable DIStributed COllaborative learning for images

Klavdiia Naumova !

Abstract

DIStributed COllaborative (DISCO) learning al-
lows several data owners (clients) to learn a joint
model without sharing data. While this approach
could transform data usage in privacy-sensitive
domains such as healthcare, the restricted access
to each client’s data limits interpretability and may
conceal bias or interoperability mismatches that
could compromise model performance. This is-
sue is particularly important for image data since
most deep neural networks for images are al-
ready black-box models. We address this problem
with inDISCO, which adapts a well-known inter-
pretable prototypical part learning network (Pro-
toPNet) to a federated setting allowing members
of the federation to directly visualize the differ-
ences in the features learned from each client. We
show that it can identify, attribute, quantify, and
potentially correct bias in distributed collabora-
tion without sharing any data. This work could
be extended to interpretable personalization in
federated learning.

1. Introduction

“What you can’t see can’t hurt you...?” — Proverb

As the bigness of big data becomes ever bigger and more
granular, so too does its potential power, value, risk, and
the legal constraints of sharing it. To address this limitation,
federated learning (FL) was proposed by (McMahan et al.,
2017) to allow multiple data owners (clients) to collabo-
ratively train a model while keeping their datasets locally.
While FL is potentially transformative for domains with
privacy-sensitive data such as healthcare, the privacy gained
comes at a major cost to transparency. Indeed, the real-world
use of deep learning is already limited by black box models,
and FL compounds the issue with black box data. Visualiz-
ing data is especially important when applied to real-world
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data which is often biased or imperfectly interoperable. Un-
derstanding differences will allow an informed selection of
collaborators and enable explainable predictions.

Problem setting. The inability to visualise data across
clients in FL is particularly problematic for imaging data
since the deep learning approaches for this modalitiy are
already poorly interpretable. This combination of black box
model and black box data, obfuscates both the reasoning
process of the model as well as the quality of its data. This
work addresses the question of how we can achieve data
transparency without compromising its privacy. Specifically,
we ask, how can we identify, quantify, explain, and even
correct for bias in unseen imaging data in the FL setting
while preserving privacy?

We adapt a well-known interpretability method introduced
by Chen et al. (2019), called prototypical part learning
(ProtoPNet). Their implementation (Appendix, Fig 3)
uses a CNN to create a set of patches in the latent space,
a prototypical patch is learned from this set. Classifica-
tion then relies on a similarity score computed between this
learned prototype and a latent representation of a test image.
A prototype can be visualized by highlighting the patch
most activated by this prototype.

We propose to adapt ProtoPNet to FL. As summarized in
Fig 1, clients each learn their own local prototypes as well
as globally in communication with each other. The patches
most activated by each of these prototypes can be visualized
and compared on each client’s local test set. By comparing
global and local prototypes the clients can assess the interop-
erability of the data. Thus, we can introduce interpretability
to FL and directly examine the predictive impact of other
data without compromising clients’ privacy.

Our main contributions are as follows:
1. We formalize a use case and create an imperfectly
interoperable benchmark image dataset.

2. We introduce inDISCO adapting ProtoPNet to FL and
compare its performance to baseline models.

3. We demonstrate how inDISCO helps to identify a bi-
ased client in FL without disclosing the data.

4. Finally, we propose a new approach to use inDISCO
for interpretable personalization.
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inDISCO, passes raw images through a CNN to create embeddings of size [H x W x D] in the latent space (Emb1, ..., Emby,), which
are divided up into H x W image patches [1 - 1 - D]. Prototypical patches (black) are clustered and a prototype (+) is learned for each
image. Classi of Client;, has systematic bias which contaminates the prototype pool (+). Ten prototypes for each class are shared to
the by each client and aggregated to make ten global prototypes. These are then pushed back to the clients. Classification
is based on a similarity score computed between the prototype and the image patches. In the final panel, we see how global and local
prototypes can be compared to directly visualize shifts without sharing any original data.

Related work. Explaining how neural networks make pre-
dictions is critical to ensuring trust in real-world use cases.
This is particularly important in the medical imaging do-
main, for example, where evaluating the alignment of logical
plausibility of a prediction helps protect patients against mis-
diagnosis (Ribeiro et al., 2016; Lundberg & Lee, 2017; Sel-
varaju et al., 2017; Simonyan et al., 2014; Singh et al., 2020;
Shrikumar et al., 2017; Chen et al., 2021; 2019). There are
many posthoc techniques that aim to explain the predictions
made by black-box models. The most popular methods
are LIME (Ribeiro et al., 2016), SHAP (Lundberg & Lee,
2017), Feature visualization ', and saliency mapping with
Grad-CAM (Selvaraju et al., 2017).

In opposition to black-box models, there exist inherently in-
terpretable models whose decision-making process is made
to be transparent. An example of such a model is a prototyp-
ical part neural network Prot oPNet (Chen et al., 2019)
that bases classification on how similar parts of an image
in the test set are to a prototypical part of an image in the
train set (Summarized in Appendix, Fig 3). Prot oPNet
showed performance comparable with the state-of-the-art
black-box deep neural networks on a popular benchmark
data set while being inherently interpretable.

In FL, clients may be imperfectly interoperable (IIO), where

Uhttps://distill.pub/2017/feature-visualization/

the biggest risk is the presence of systematic bias in one
client, resulting in label leakage. For instance, a set of X-
rays, where the diagnosis is written on the image. The biased
features learned from this client would contaminate the fea-
ture pool in an FL setting and decrease the performance of a
global model. One of the approaches to address this issue is
adding local personalization layers to the model. This idea
is presented in the works (Arivazhagan et al., 2019) (FedPer)
and (Roschewitz et al., 2021) (iFedAvg). In particular, iFe-
dAvg is also designed to identify and visualize the clients
and features causing the shift through local feature-wise
affine layers f;,, and f,,+ which can learn the feature-wise
differences between clients compared with the global model,
without sharing any data. While this is interpretable for tab-
ular data (where features are intelligible), the same is not
true for images. We propose applying Prot oPNet to this
IIO-FL setting to best isolate interpretable features from
images that can be compared and interpreted.

2. Problem formulation

Context. We trained 1nDISCO in an FL setting using either
IID (unbiased, identically distributed classes) or I1O (imper-
fectly interoperable with systematic bias in a single class)
data distribution among clients. A central server aggregates
and updates the models’ parameters. By learning local pro-
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totypes, each client identifies the parts of its training images
most important for the task. In contrast, the global proto-
types show the relevance for all clients on average. Finally,
by examining the difference between local and global pro-
totypes, a client can identify and quantify the presence of
bias in its own or another client’s dataset. Optionally shar-
ing local prototypes among clients can further attribute the
origin of bias. Taken together this information can guide ap-
propriate action, to avoid the negative effect of data bias on
a global model, such as client selection or personalization
by penalizing the learning of biased features.

Notation. Let us adapt the notation from (Chen et al., 2019).
Given input x,,, where n € {1,..., N}, each of N clients
learns features with convolutional layers f(x,,) and m pro-
totypes P, = {p,,;}7-;. Given a convolutional output
z, = f(x,), the j-th prototype of the n-th client’s unit
Ip;.n in the prototype layer g,, computes the squared L?
distance between the prototype p,,; and all the patches of
Z,, and converts these distances into similarity scores. These
scores are then multiplied by the weight matrix wy,, in the
final fully connected layer h,, followed by softmax normal-
ization to output class probabilities.

Local training. Given a set of training images D,, =
{(Xni> Yni) }¥_,, where k is a number of images per client,
each client aims to minimize the following objective:

k
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where weono,n denotes the weights of the convolutional lay-
ers learned by client n, CrsEnt is a cross-entropy loss that
penalizes the misclassification, and the cluster and separa-
tion costs are defined as follows:
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The minimization of the cluster cost (Clst) is needed to make
each training image have a latent patch that is close to at
least one prototype of the correct class. At the same time,
every latent patch of a training image is separated from the
prototypes of the incorrect class through the minimization
of the separation cost (Sep). More detail ProtoPNet is found

in Chen et al. (2019) and summarized in Appendix Fig3.

Sep,, =

Federated update. At the global update step, the
server performs simple averaging of all the local pro-
totypes Pi,e = {P,}"_, and weights of the final layer
Wi.i0e = {wnn }Y_; to obtain the global parameters:

N
1
@ Wigioh = 5 > whn (5)

n=1

1 N
Pglob = N;Pn

and then sends them back to clients as shown in Fig 1.

3. Experimental setup
3.1. Dataset

Our inDISCO model was trained and evaluated on CUB-
200-2011 dataset (Wah et al., 2011) of 200 bird species from
which we took 20 classes. Preprocessing was performed
as described by Chen et al. (2019). We introduced class-
specific bias for one clients by adding an emoji to the images
of a particular class (Appendix, Fig. 4). The repository can
be found here (link provided at submisssion).

3.2. Experiments

i. Centralized baseline. As a baseline, we follow the ar-
chitecture of Prot oPNet (using the VGG19 (Simonyan &
Zisserman, 2015) implementation pretrained on ImageNet
(Deng et al., 2009)) to learn a centralized model with central-
ized prototypes (CMCP) on the whole dataset. We learned
10 prototypes of size [1 - 1 - 128] per class.

ii. IID-FL local baseline. We made an IID partition of
the data over four clients and trained local ProtoPNets with
local prototypes for each (LMLP).

iii. IID-FL global baseline. Using the FL setup above,
global models with global prototypes (GMGP) were trained
according to the scheme depicted in Fig 1. The training is
composed of six communication rounds between the clients
and the server. The server initializes a ProtoPNet model
and sends it to the clients. The clients learn LMLP. After
5 epochs, a subset of LP are communicated to the server
and aggregated. Importantly, during this training stage, each
client keeps the pretrained convolutional weights frozen and
trains two additional convolutional layers. Each of the next
communication rounds includes the following steps:

* Local convolutional layers. Each client trains convo-
lutional layers locally (on their own dataset).

* Local prototypes. The local latent representation of
each image is divided into image patches and a local
prototypical patch of each image is used to learn a set
of ten local prototypes P;,. and weights W,., which
are sent to the server after each ten epochs.

* Global prototypes. The server aggregates local pro-
totypes by averaging to create a set of ten global pro-
totypes Pyio, and weights Wy, gi0,. These are shared
back to each client to iterate training.

* Interpretability. Each client visualizes interoperabil-
ity shifts by projecting each prototype onto the nearest
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latent training patch from the same class and then opti-
mize the final layer to improve accuracy.

After training, we have as many global models as clients. All
these models have global prototypes and different wcon,n
whose updates stayed locally. Importantly, we purposefully
limit the global training of convolutional layers, for the
purpose of comparing interoperabilty, thus the performance
of GMGP is expected to be lower than CMCP.

iv. IIO-FL Experiment. Finally, we trained LMLP® and
GMGP" in an FL setting with three unbiased IID clients and
one IIO client (with systematic bias in one class (Appendix
Fig 4). We visually inspect the prototypes learned locally
and globally to detect IIO shifts between clients without
sharing any original data.

4. Results

4.1. TID setting.

The average accuracy for CMCP (i.e. ProtoPnet base-
line), LMLP, and GMGP trained on unbiased IID data are
presented in Table 1. As expected local models perform
worse than a centralized model due to the smaller dataset.
As the training of the global model is purposely restricted to
highlight differences in clients’ data, we do not expect the
GMGP to significantly improve upon LMLP, which is the
case. Indeed, only part of the GMGP network is updated
globally (prototypes P,, and weights wy,, ), while the convo-
lutional layers are kept local. Nevertheless, the prototypes
learned in these three settings are rather similar as can be
seen in Appendix, Fig.5.

Table 1. Centralized vs FL IID settings. Classification accu-
racies for CMCP (centralized model/prototype), LMLP (local
model/prototype), and GMGP (global model/prototype) trained
without data bias. The mean computed over four clients are shown
with standard deviation.

CMCP LMLP GMGP
86.02 82.76 £1.14 81.25 +0.49

MODEL

ACCURACY (% =SD)

4.2, ITIO-FL setting.

Bias injection into one client’s dataset has a strong effect on
model performance and prototypes. In this case, we com-
pare models’ accuracy separately on unbiased and biased
data and in addition to average accuracy over all classes,

& E,IM}YP""C&H&aﬁP’oggf @M@@e%@teﬂ%%&orﬁ%&f

worse on unbiased data than on biased one. Notably, the
local model gives 100.0% accuracy for a biased class on
a dataset with emoji and 0.0% accuracy for this class on
unbiased data. This clearly indicates that the model assigns
this class based on the presence of bias and thus suffers
catastrohpic failure in the absence of bias. Indeed, as shown
in Figure 2, LMLP (trained on unbiased data) and LMLP®
activate totally different patches on the same test image with

Table 2. Effect of IIO bias in FL. Classification accuracies for
local and global models trained in an FL setting which has a biased
client. For each model, the value in the left subcolumn corresponds
to the test set of a biased client, and in the right subcolumn, there is
an average value over the test sets of unbiased clients with standard
deviation where possible. Performance is shown from bad to good.

GMGP®
| BIASED | UNBIASED | BIASED | UNBIASED

85.8 | 76.1£1.7 | 83.3 | 75.3%x1.2
100.0 0.0 85.7 4.8+4.7

MODEL | LMLP® |

TEST SET

ALL CLASSES
BIASED CLASS

and without emoji.

Communication of prototypes with other clients brings
slight improvement to the model’s performance. GMGP”
has 4.76% accuracy for biased class on unbiased data and
85.71% on biased one. From Figure 2, we can see that the
global model for a biased client does not activate the emoji
as its local counterpart but still looks at a less informative
patch close to it. Global model for good clients, however,
looks at the bird’s head as it does the local one. The distance
between these prototypes can not only be visualised, but
also computed, meaning that it could be used to derive a
personalization weight which is visually interpretable.

The negative effect of data bias is additionally demonstrated
in Appendix Table 3. Here, we show how different models
predict a class for biased and unbiased test images.

PROTOTYPES

Local Global Local
(other client)

(self-learned)

CLIENT
Unbiased data

Biased data

Figure 2. Prototypes learned in I1O FL setting. Examples of
a test image with bounding boxes indicating the most activated
patches by the prototypes learned locally and on

and datasets in an IIO-FL setting.

5. Discussion

inDISCO, a novel extension of Prot oPnet, allows inter-
pretable and privacy-preserving identification of data bias
in FL. The bias can be visualized as well as quantified,
which holds the potential for creating a visually interpretable
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personalization scheme. Thus, inDISCO provides trans-
parency from black-box data without compromising privacy.
Indeed, the only elements shared with the server are proto-
types computed from a latent space representation. These
shared elements can be tailored to various privacy budgets
by varying the number of prototypes per class, the size of a
prototype, and the number of communication rounds.
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A. Appendix
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Figure 3. ProtoPnet architecture. This is a centralized setting with no clients. ProtoPnet, passes raw images through a CNN
to create embeddings of size [H x W x D] in the latent space (Emb1, ..., Embr,), which are divided up into H x W image patches

[1-1- D]. Prototypical patches (black) are clustered and a prototype (+) is learned for each image. Classification is based on a similarity
score computed between the prototype and the image patches. In the final panel, we see prototypes can be visualized to directly.

(a) Unbiased (b) Biased

Figure 4. Imperfectly interoperable images used in this work. The biased client (b) has a red emoji of a parrot in the lower left corner.
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Figure 5. Examples of training images with bounding boxes indicating centralized, local, and global prototypes learned on unbiased data.

Table 3. Prediction results of local and global models for two biased and two unbiased test images coming from biased and unbiased
during training classes.

| BIASED CLASS || UNBIASED CLASS
MODEL | TEST IMAGE

| UNBIASED | BIASED | UNBIASED | BIASED
LMLP | COR | cor || COR | cor
LMLP® | INCOR | COR | COR | INCOR
GMGP | COR | cor || COR | Ccor
GMGP® | INCOR | COrR | corR | INCOR

Figure 6. Examples of training images with bounding boxes indicating local and global prototypes learned on biased data.



