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xDISCO: eXplainable DIStributed 
COllaborative learning for images 

1 BACKGROUND 

Federated learning (FL) is a method of building collaborative 
predictive models between clients without sharing any original 
data. FL is actively used in privacy-sensitive domains such as 
medicine and finance. 

OUR SOLUTION 

xDISCO adapts interpretable “prototypical part learning”  to an 
FL setting, where each client learns which parts of its images are 
most important for the task.  
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Model 
Accuracy, % 

MNIST Fashion MNIST 

Baseline* 98.0 89.2 

xDISCO (ours) 
good data 

91.7 81.5 

xDISCO (ours) 
biased data 

91.7 81.9 
*The baseline model is a ProtoPNet trained on 
good data in a centralized setting 

• Adding personalization layers 
suggested by Roschewitz, et al. 
(2021) around a shared part of the 
model to identify and correct local 
bias by learning a shift from local 
to global prototypes;  
 

• Quantifying the privacy risk of 
sharing prototypes. 
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• A prototypical part learning model can be used in an FL setting on 
good and systematically biased data to provide interpretability. 

  
• Learned prototypes activate a part of an image at which the 

network looks to base its prediction and this activated region 
changes in presence of data bias.  

 
• We hypothesize that with personalization layers, it would be 

possible to identify and correct bias in federated learning in a 
privacy-preserving way. 

Challenges of FL: 
• Low interpretability 
• Low robustness to systemic bias between datasets. 
These problems are particularly important for images since 
the deep learning models they require are also poorly 
interpretable.  
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In every communication round: 

1. Each client 𝑘 learns 𝑚 local prototypes 𝑷𝑘 = {𝑝𝑘𝑗}𝑗=1
𝑚  on 

its dataset and sends them to the server. 
2. The server aggregates and averages local prototypes to 

obtain the global ones and sends them back to 𝑁 clients. 

After training we can visualize global 
and local prototypes on each client’s 
dataset and compare. 

Name 
Number of 

train/test images 
Color/size Example 

MNIST 50,000/10,000 Grayscale/ 28×28 

Fashion 
MNIST 

50,000/10,000 Grayscale/ 28×28 

Datasets 

We added bias (an emoji) to one client’s images of a 
particular class. 
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