xDISCO: eXplainable DIStributed COllaborative learning for images

Klavdiia Naumova¹, Mary-Anne Hartley¹, Arnout Devos¹, Sai Praneeth Karimireddy², Martin Jaggi¹ ¹Intelligent Global Health Research Group, Machine Learning and Optimization Laboratory, EPFL ²Berkeley AI Research Laboratory, UC Berkeley

1 BACKGROUND

Federated learning (FL) is a method of building collaborative predictive models between clients without sharing any original data. FL is actively used in privacy-sensitive domains such as medicine and finance.

Challenges of FL:

- Low interpretability
- Low robustness to systemic bias between datasets.

These problems are particularly important for **images** since the deep learning models they require are also poorly interpretable.

2 OUR SOLUTION

xDISCO adapts interpretable **"prototypical part learning"** to an FL setting, where each client learns which parts of its images are most important for the task.

In every communication round:

- 1. Each client k learns m local prototypes $P_k = \{p_{kj}\}_{j=1}^m$ on its dataset and sends them to the server.
- 2. The server aggregates and averages local prototypes to obtain the **global** ones and sends them back to *N* clients.

Baseline*	98.0	89.2
xDISCO (ours) good data	91.7	81.5
xDISCO (ours) biased data	91.7	81.9

*The baseline model is a ProtoPNet trained on good data in a centralized setting

4 FUTURE WORK

- Adding personalization layers
 suggested by Roschewitz, et al.
 (2021) around a shared part of the
 model to identify and correct local
 bias by learning a shift from local
 to global prototypes;
- Quantifying the privacy risk of sharing prototypes.

Δ

5 CONCLUSIONS

- A prototypical part learning model can be used in an FL setting on good and systematically biased data to provide interpretability.
- Learned prototypes activate a part of an image at which the network looks to base its prediction and this activated region changes in presence of data bias.

Δ

 We hypothesize that with personalization layers, it would be possible to identify and correct bias in federated learning in a privacy-preserving way.